US009304845B2

a2 United States Patent 10) Patent No.: US 9,304,845 B2
Francis et al. 45) Date of Patent: Apr. 5, 2016
(54) STORAGE INTEGRITY VALIDATOR 7,200,626 B1* 42007 Hoang GOGF 11/0751
7,552,357 B2 6/2009 Grcanac et al.
B . : : : 7,890,815 B2 2/2011 Hafner et al.
(71) Applicant: Icntemat"fnalzlsmrfﬁsff; c[l}g‘es §.108,613 B2 1/2012 Durica etal.
orporation, Armonk, NY (US) 8,140,909 B2 3/2012 Luan et al.
. 8,250,453 B2 8/2012 Matsushige
(72) Inventors: Huw Francis, Winchester (GB); David 2004/0250028 Al 12/2004 Daniels et al.
A. Sinclair, Winchester (GB) 2005/0005191 Al 1/2005 Judd
2009/0055584 Al 2/2009 Hafner et al.
H . : : : 2009/0216944 Al 8/2009 Gill et al.
(73) Assignee: Internatl({nal Busmlflzs Machines 2009/0276586 Al 11/2009 Royer et al.
Corporation, Armonk, NY (US) 2010/0191910 Al 7/2010 Gates etal.
. . o . 2011/0072300 Al 3/2011 Rousseau
(*) Notice: Subject to any disclaimer, the term of this 2012/0304025 Al 112012 O’Connor
patent is extended or adjusted under 35 2013/0007531 Al 1/2013 Jibbe et al.
U.S.C. 154(b) by 109 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/258,335 GB Application 1309741.5, entitled “Storage Integrity Validator,”
(22) Filed: Apr. 22,2014 filed on May 31, 2013. ,
(Continued)
(65) Prior Publication Data
US 2014/0359399 A1 Dec. 4, 2014 Primary Examiner — Fritz Alphonse
(74) Attorney, Agent, or Firm — Penny L. Lowry; Randall J.
(30) Foreign Application Priority Data Bluestone
May 31,2013 (GB) oo 1309741.5 (57) ABSTRACT
(51) Int.CL A sequence code verification system can be designed to
GO6F 11/10 (2006.01) include a data reader, a validity engine, and an error notifier.
GO6F 11/07 (2006.01) The data reader can read sequence codes from consecutive
52) US.CL logical blocks. The validity engine can invalidate write opera-
(52) g ty eng p
CPC ... GO6F 11/0751 (2013.01); GO6F 11/0727 tions in response to checking data validity by applying com-
(2013.01) parison operations to sequence codes and block offsets of
(58) Field of Classification Search batch write operations. The error notifier can notify a user of
CPC oo GOGF 11/1068 an error for each invalidated write operation batch. The sys-
USPC oo 714/773,776, 763,727 tem can validate data written to logical blocks on a storage
See application file for complete search history. subsystem adapted so that, during write operations, an addi-
tional sequence code is written to each logical block of data.
56 References Cited The sequence code can remain constant for each write opera-
q P

U.S. PATENT DOCUMENTS

6,553,511 Bl
7,020,805 B2

4/2003 DeKoning et al.
3/2006 Talagala et al.

Storage System 10
A,

tion batch and the sequence code can be incremented for each
new write operation batch.

20 Claims, 4 Drawing Sheets

Storage Controller 200

Storage Subsystem 12

i Sequence || Scquence

| Cade il Code
' Writer 202 || Verifier 204

i Network i Data !
| Adapter Adapter |
| 24 | 26 |

.

A
It Network /i_f_' L
ps 20 N

4 E}._«"
o

o

US 9,304,845 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Fox, M., “End-to-end data protection using T10 standard data integ-
rity field,” IBM developerWorks, May 24, 2011, © Copyright IBM
Corporation 2011.

Riska et al., “Idle read after write: IRAW,” Proceedings of the 2008
Annual Technical Conference, pp. 43-56, USENIX Association Ber-
keley, CA, USA © 2008.

International Search Report dated Nov. 21, 2013 for International
Application No. 1309741.5, 4 pages.

* cited by examiner

U.S. Patent

Storage System | \O

Apr. 5, 2016

Sheet 1 of 4 US 9,304,845 B2

Storage Subsystem 12

gt
Storage Controller 200
Sequence Sequence
Code Code
Writer 202 | | Verifier 204

Memory 30
Volatile Memory 32
RAM 36 CACHE 38

Central Processing Unit 22

Bus 28
Network Data
Adapter Adapter
24 26

A

a2

ST
\ //

Persistent Memory 34

Application Data 40

Firmware 42

W/

4

Computer 14

Computer 16

I—b

FIG. 1

U.S. Patent Apr. 5, 2016 Sheet 2 of 4 US 9,304,845 B2

Sequence Code Writer 202

Sequence code counter 206

Reservation Mechanism 208

Sequence Code Write Method 300

FIG. 2A

Sequence Code Verifier 204

Sequence Code Verification Method 400

F1G. 2B

U.S. Patent Apr. 5, 2016 Sheet 3 of 4 US 9,304,845 B2

Sequence Code Write Method 300

302 Receive write operation batches

y

304 Increment sequence code counter <7

f

306 Reserve sequence code for parallel
write operation batch

&_I

308 Write data in each logical block L(n)

310 In each logical block, write offset F(n)
!

312 In each logical block, write number of
blocksN(n) in the write operation batch
v

314 In each logical block, write sequence
codeS(n) for the write operation batch
L.....v

316 Record error messages for write
operation batch

¥ Yes
318 Next write ~__ |
operation batch

No|

< 320 End D

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,304,845 B2

Sequence Code Verification Method 400

402 For each logical block from a plurality of
logical blocks (zero to N)
v

404 Examine consecutive logical blocks, read
sequence codes S(n) and S(n+1)
+

406 Invalidate if sequence code S(n)< sequence
code S(n+1) and offset F(n+1) is not equal to zero

408 Invalidate if sequence code S(n)>sequence
code S(n+1) and offset F(n) does not correspond to
the number of logical blocks N(n) in the batch

write operation for n

v
410 notify an error for corresponding write batch
operation

:

412 Determine 1f an error is a torn error from

historical error records
|.v

~__ 414 next logical block Yes

No
v

. 416 End >

FIG. 4

US 9,304,845 B2

1
STORAGE INTEGRITY VALIDATOR

TECHNICAL FIELD

This invention relates to a method and apparatus for detect-
ing erroneous writes in a storage system. The apparatus can be
an integrity validator or integrity protection tool or any test
tool for detecting erroneous writes including torn writes and
dropped writes.

BACKGROUND

In a storage subsystem under test it is challenging to detect
defective behavior for erroneous writes including torn writes
and dropped writes. A dropped write occurs when a write
operation to a storage subsystem acknowledges completion
but the storage subsystem does not receive the complete set of
data.

A torn write occurs when a write operation to a storage
subsystem experiences an error and the storage subsystem
does not receive the complete set of data. The actual storage
subsystem data is expected to be a mix of the old data that was
on the storage system disk before the write operation started
and the new data that is associated with the planned write to
the storage subsystem. The actual data on the storage sub-
system could be all old data, all new data, or any mix in-
between.

When an error occurs, a storage subsystem will perform
one of the following actions: write a complete logical block
(for instance five hundred and twelve bytes); not write the
logical block at all; or return a medium or hardware error for
that logical block if the logical block is partially written to.
Therefore, for an unknown torn error, it can be expected that
data boundaries between old and new data will occur at logi-
cal block boundaries. A storage subsystem will guarantee that
the boundary between the old and the new data will occur in
certain places. It would desirable to be able to use these
characteristics to determine errors.

When developing a storage subsystem, test engineers will
run test programs on application hosts. The test programs
perform read and write operations to the storage subsystem to
validate that the storage subsystem is behaving as intended.
Under normal conditions (that is when there are no error
conditions present), test programs will expect the data read
from the storage subsystem to match exactly the data that was
written to the storage subsystem. If, however, an error occurs
(such as a broken cable, or software failure), then the read
and/or write operations to the storage subsystem will not
complete reliably. The test program cannot expect the data
read back from the storage subsystem to match exactly the
data that was previously written. Even though a write has
failed, however, the storage subsystem specification may
state that there are some constraints on what data can be
returned to a subsequent read from the same area of the
storage subsystem. It would be desirable to be able to confirm
that these constraints are met.

SUMMARY

In a first aspect of the invention there is provided a verifi-
cation system for validating data written to logical blocks on
a storage subsystem, said storage subsystem being adapted so
that during write operations of data to the logical blocks, an
additional sequence code is written to each logical block
whereby said sequence code remains constant for each write
operation batch and whereby said sequence code is incre-
mented for each new write operation batch, said verification

10

15

20

25

30

35

40

45

50

55

60

65

2

system comprising: a data reader for reading respective first
and second sequence codes (S(n) and S(n+1)) from consecu-
tive first and second logical blocks (L(n) and L(n+1)); a
validity engine for checking validity by applying the follow-
ing operations: invalidating the corresponding write opera-
tion batch if the first sequence code (S(n)) is less than the
second sequence code (S(n+1)) and a block offset (F(n+1)) of
the second logical block (L(n+1)) is not equal to zero; and
invalidating the corresponding write operation batch if the
first sequence code S(n) is more than the second sequence
code S(n+1) and a block offset (F(n)) of the first logical block
(L(n)) does not correspond to the number of logical blocks in
the corresponding batch write operation for the first logical
block (L(n)); and an error notifier for notifying an error for
each invalidated write operation batch.

The embodiments include a number of predetermined
pieces of information in the data written to each logical block
on a storage subsystem, and to apply rules in a test program
that read this data and enable the test program to determine if
the data meets the constraints for an erroneous write in the
storage subsystem. Other test tools can determine if there are
parts of the data that are missing or incorrect, but cannot
determine if the missing data matches the characteristics of a
torn write.

The embodiments have atechnical effect on technical input
and output processes carried on outside the computer result-
ing from reduction of individual errors and overall reliability
improvements. The embodiments have a technical effect that
operates at the machine and system level of a computer and
below an overlying application level so that all improvements
are transparent to computer applications. The embodiments
improved operational reliability results in the computer being
made to operate in a new way.

In a second aspect of the invention there is provided a
method for validating data written to logical blocks on a
storage subsystem, said storage subsystem being adapted so
that during write operations of data to logical blocks, an
additional sequence code is written to each logical block
whereby said sequence code remains constant for each write
operation batch and whereby said sequence code is incre-
mented for each new write operation batch, said method
comprising: (A) reading respective first and second sequence
codes (S(n) and S(n+1)) from consecutive first and second
logical blocks (L.(n) and L(n+1)); (B) checking validity by
applying the following operations: (1) invalidating the corre-
sponding write operation batch if the first sequence code
(S(n)) is less than the second sequence code (S(n+1)) and a
block offset (F(n+1)) of the second logical block (L(n+1)) is
not equal to zero; (2) invalidating the corresponding write
operation batch if the first sequence number (S(n)) is more
than the second sequence number (S(n+1)) and a block offset
F(n) of the first block (L(n)) does not correspond to the
number of logical blocks in the corresponding batch write
operation for the first logical block (L(n)); (C) notifying an
error for each invalidated write operation batch; and perform-
ing steps (A), (B) and (C) for each logical block (n) from a
plurality of logical blocks (zero to N).

Suitably, the sequence code is written to that part of the
logical block that is reserved for application data. This is
appropriate for testing environments and is appropriate when
there is not enough room in a metadata portion of a logical
block.

Alternatively, the sequence code is written to that part of
the logical block that is reserved for metadata. This is appro-
priate for production environments and is appropriate when
there is enough room in a metadata portion of a logical block.

US 9,304,845 B2

3

Advantageously, the method further comprises ensuring
that a first thread (A) places a reservation in the storage
subsystem, for those logical blocks that it is going to write to,
before it obtains the sequence number it will use in the write.
Therefore, if other threads (such as B, C or n) try to write to an
area of the disk including one or more of these logical blocks,
then the other threads will not be able get a reservation on
those logical blocks. The reservation prevents writes from
other threads being able to get a later sequence number than
the first thread until the first thread is completed. Once the
first thread has completed then the reservation is released and
other threads can proceed to use the previously reserved logi-
cal blocks. Therefore, such a reservation scheme ensures that
overlapping writes are not performed.

More advantageously, the sequence number is an eight
byte value. This means that, in any given test, there is no
practical chance of this sequence number wrapping back to
zero, as at a thousand write operations per second, it would
take about five hundred million years to wrap.

Even more advantageously, validity is checked by applying
a further test of validating the logical block pair (I.(n) and
L(n+1)) if a torn write occurs at logical block address L(n)
and if the block offset F(n) modulus of a predetermined block
boundary length is zero. For instance, it would be known that
the tear in the write is at a thirty two block boundary relative
to the start of the write and in the case of certain storage
systems (like a storage volume controller (SVC)) this would
be a torn write that is allowed to occur. Other predetermined
block boundary lengths are sixty four and a hundred and
twenty eight (as associated with storage volume controllers)
or any number and not necessarily a multiple of two.

Still more advantageously the block offset (F(n)) of the first
logical block (L(n)) equals the number of logical blocks in the
batch write operation minus one.

In a third aspect of the invention there is provided a com-
puter program product for validating write operation batches
to a storage subsystem, the computer program product com-
prising a computer-readable storage medium having com-
puter-readable program code embodied therewith and the
computer-readable program code configured to perform all
the steps of the methods.

The computer program product comprises a series of com-
puter-readable instructions either fixed on a tangible medium,
such as a computer readable medium, for example, optical
disk, magnetic disk, solid-state drive or transmittable to a
computer system, using a modem or other interface device,
over either a tangible medium, including but not limited to
optical or analogue communications lines, or intangibly
using wireless techniques, including but not limited to micro-
wave, infrared or other transmission techniques. The series of
computer readable instructions embodies all or part of the
functionality previously described herein.

Those skilled in the art will appreciate that such computer
readable instructions can be written in a number of program-
ming languages for use with many computer architectures or
operating systems. Further, such instructions may be stored
using any memory technology, present or future, including
but not limited to, semiconductor, magnetic, or optical, or
transmitted using any communications technology, present or
future, including but not limited to optical, infrared, or micro-
wave. It is contemplated that such a computer program prod-
uct may be distributed as a removable medium with accom-
panying printed or electronic documentation, for example,
shrink-wrapped software, pre-loaded with a computer sys-
tem, for example, on a system ROM or fixed disk, or distrib-
uted from a server or electronic bulletin board over a network,
for example, the Internet or World Wide Web.

10

15

20

25

30

35

40

45

50

55

60

65

4

In a fourth aspect of the invention there is provided a
computer program stored on a computer readable medium
and loadable into the internal memory of a digital computer,
comprising software code portions, when said program is run
on a computer, for performing all the steps of the method
claims.

In a fifth aspect of the invention there is provided a data
carrier aspect of an embodiment that comprises functional
computer data structures to, when loaded into a computer
system and operated upon thereby, enable said computer sys-
tem to perform all the steps of the method claims. A suitable
data-carrier could be a solid-state memory, magnetic drive or
optical disk. Channels for the transmission of data may like-
wise comprise storage media of all descriptions as well as
signal-carrying media, such as wired or wireless signal-car-
rying media.

The above summary is not intended to describe each illus-
trated embodiment or every implementation of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are incor-
porated into, and form part of, the specification. They illus-
trate embodiments of the present disclosure and, along with
the description, serve to explain the principles of the disclo-
sure. The drawings are only illustrative of certain embodi-
ments and do not limit the disclosure.

Embodiments of the present invention will now be
described, by way of example only, with reference to the
following drawings in which:

FIG. 1 is a deployment diagram of an embodiment;

FIG. 2A is a component diagram of a sequence code writer
of an embodiment;

FIG. 2B is a component diagram of a sequence code veri-
fier of an embodiment;

FIG. 3 is a flow diagram of a sequence code write method
of an embodiment; and

FIG. 4 is a flow diagram of a sequence code verification
method of an embodiment.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all modi-
fications, equivalents, and alternatives falling within the spirit
and scope of the invention.

Inthe drawings and the Detailed Description, like numbers
generally refer to like components, parts, steps, and pro-
cesses.

DETAILED DESCRIPTION

Referring to FIG. 1, the deployment of an embodiment in
storage system 10 is described. Storage system 10 is opera-
tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well-known computing processing systems,
environments, and/or configurations that may be suitable for
use with storage system 10 include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, mini-

US 9,304,845 B2

5

computer systems, mainframe computer systems, and distrib-
uted cloud computing environments that include any of the
above systems or devices.

Storage system 10 may be described in the general context
of computer system-executable instructions, such as program
modules, being executed by a computer processor. Generally,
program modules may include routines, programs, objects,
components, logic, and data structures that perform particular
tasks or implement particular abstract data types. Storage
system 10 may be embodied in distributed cloud computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed cloud computing environment, pro-
gram modules may be located in both local and remote
computer system storage media including memory storage
devices.

Storage subsystem 10 comprises: storage subsystem 12
and one or more computers 14 directly attached to the storage
subsystem 12 and one or more computers 16 attached via a
network 20 to the storage subsystem 12. Network 20 can be a
local area network (LAN), a wide area network (WAN), or the
Internet.

Storage subsystem 12 comprises: central processing unit
(CPU) 22; network adapter 24; device adapter 26; bus 28;
memory 30 and storage controller 200.

CPU 22 loads machine instructions from memory 30 and
performs machine operations in response to the instructions.
Such machine operations include: incrementing or decre-
menting a value in register (not shown); transferring a value
from memory 30 to a register or vice versa; receiving instruc-
tions from a different location in memory if a condition is true
or false (also known as a conditional branch instruction); and
operating on the values in two different registers and putting
the result in another register. A typical CPU can perform
many different machine operations. A set of machine instruc-
tions is called a machine code program, the machine instruc-
tions are written in a machine code language which is referred
to alow level language. A computer program written in a high
level language needs to be compiled to a machine code pro-
gram before it can be run. Alternatively a machine code
program such as a virtual machine or an interpreter can inter-
pret a high level language in terms of machine operations.

Network adapter 24 is connected to bus 28 and network 20
for enabling communication between the storage subsystem
12 and network attached computers 16.

Device adapter 26 is connected to bus 28 for enabling
communication between storage subsystem 12 and comput-
ers 14.

Bus 28 couples the main system components together
including memory 30 to CPU 22. Bus 28 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel-
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) bus.

Memory 30 includes computer system readable media in
the form of volatile memory 32 and non-volatile or persistent
memory 34. Examples of volatile memory 32 are random
access memory (RAM) 36 and cache memory 38. Generally
volatile memory is used because it is faster and generally
non-volatile memory is used because it will hold the data for
longer. Storage subsystem 10 may further include other
removable and/or non-removable, volatile and/or non-vola-

25

40

45

6

tile computer system storage media. By way of example only,
persistent memory 34 can be provided for reading from and
writing to a non-removable, non-volatile magnetic media (not
shown and typically a magnetic hard disk or solid-state drive).
Although not shown, further storage media may be provided
including: an external port for removable, non-volatile solid-
state memory; and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
compact disk (CD), digital video disk (DVD) or Blu-ray. In
such instances, each can be connected to bus 28 by one or
more data media interfaces. As will be further depicted and
described below, memory 30 may include at least one pro-
gram product having a set (for example, at least one) of
program modules that are configured to carry out the func-
tions of embodiments of the invention.

Persistent memory 34 comprises application data 40 and
firmware 42. During operation some or all of the application
data is loaded to volatile memory 32. Further program mod-
ules that support an embodiment but are not shown include
operating system, and support applications. Each of the oper-
ating system, support applications, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment.

Storage controller 200 is for controlling input and output to
the volatile memory 32 and persistent memory 34. Storage
controller 200 comprises: sequence code writer 202 and
sequence code verifier 204 described in more detail below.
Storage controller 200 is shown as part of storage system 10
in an embodiment but other embodiments are envisaged
where a storage controller is a stand alone component or part
of'a more general computer system.

Storage system 10 communicates with at least one network
20 (such as a local area network (LAN), a general wide area
network (WAN), and/or a public network like the Internet) via
network adapter 24. Network adapter 24 communicates with
the other components of storage subsystem 12 via bus 28. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with storage system 10. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, redundant array of indepen-
dent disks (RAID), tape drives, and data archival storage
systems.

Referring to FIG. 2A, sequence code writer 202 comprises:
sequence code counter 206; reservation mechanism 208; and
sequence code write method 300.

Sequence code counter 206 is for counting a sequence
code.

Reservation mechanism 208 is for ensuring that a first
thread (A) places a reservation in the storage subsystem for
logical blocks of data that it is going to write to, before it
obtains the sequence code it will use in the write. If other
threads (such as B, C orn) try to write to an area of the storage
including one or more of logical block, then the other threads
will not be able get a reservation on those logical blocks. This
will prevent writes from other threads being able to get a later
sequence number than the first thread until the first thread is
completed. Once the first thread has completed its write, it
releases the reservation on the logical block and other threads
can proceed.

Sequence code write method 300 is for writing sequence
code during data write operations and is described in more
detail below with respect to FIG. 3.

Referring to FIG. 2B, sequence code verifier 204 com-
prises sequence code verification method 400.

US 9,304,845 B2

7

Sequence code verification method 400 is for verifying the
sequence code and is described in more detail with respect to
FIG. 4.

Referring to FIG. 3, sequence code write method 300 com-
prises logical process steps 302 to 320.

Step 302 is for receiving write operation batches from
computers 14 and 16. A write operation batch is a sequence of
data writes that form a single batch.

Step 304 is for incrementing the sequence code counter
206.

Step 306 is for reserving a sequence code using reservation
mechanism 208 and sequence code counter 206.

Step 308 is for writing data of a write operation batch to
logical blocks.

Step 310 is for writing block offset values F(n) to each
logical block.

8

The offset of a logical block n from the start of the write is

F(n).
The number of logical blocks in the write operation batch

is N.
5 To perform write testing an additional parameter is added:
A sequence number S is incremented for each write opera-
tion batch. This sequence number is chosen to be an
eight byte value. This means that, in any given test, there
is no practical chance of this sequence number wrapping
back to zero, as at a thousand write operations per sec-
ond, it would take about five hundred million years to
wrap. Each physical storage unit (for example a disk)

that is being tested has its own sequence number.
Therefore, if thirty two write operations and then a write of
15 eight blocks starting at [.(102) is performed, then the data on
the disk would look like:

10

L 102 103
F 0

N 10 10
S 33 33

104 105 106 107 108 109 (Logical Block Address)

2 3 4 5 6 7 (Offset)

10 10 10 10 10 10 (Number of blocks in the write)
33 33 33 33 33 33 (Sequence Code)

Step 312 is for determining a number of blocks N(n) used
in the write operation batch and for writing the number N(n)
in each logical block.

Step 314 is for writing the reserved sequence code S(n) in
each logical block.

Step 316 is for recording any error message or messages for
the write operation batch;

Step 318 is for branching back to step 304 if there are
further write operation bathes. Else step 320.

Step 320 is the end of the method 300.

Referring to FIG. 4, sequence code verification method
400 comprises logical process steps 402 to 416.

Step 402 is for defining a loop for each logical block (n)
from a plurality of logical blocks (zero to N).

Step 404 is for reading a pair of consecutive sequence
numbers S(n) and S(n+1).

Step 406 is for invalidating the corresponding write opera-
tion batch if the sequence code S(n) is less than (<) the
sequence code S(n+1) and the offset (n+1) is not equal to zero.

Step 408 is for invalidating the corresponding write opera-
tion batch if the sequence code S(n) is more than (>) the
sequence code S(n+1) and offset F(n) is does not correspond
to the number of logical blocks in the corresponding write
operation batch for S(n). In this case, the offset F(n) should
equal the number of logical blocks N(n) minus one.

Step 410 is for notifying an error for an invalidated write
operation batch.

Step 412 is for determining if an error is a torn error by
examining historical error messages corresponding to the
write operation batch. If there is the corresponding write error
then the discovered error is a torn error rather than a dropped
error.

Step 414 is for branching back to step 404 if there is another
logical block to be processed. Else step 416.

Step 416 is the end of method 400.

For example, existing data patterns used by an example
disk testing tool ensure that when a write operation is per-
formed, each sector of the data written contains:

The logical block address (LBA) or L(n)—this is the logi-
cal block address of the logical block (for instance
within a sector of a disk). The first block is given the
address 1.(0), the second block is L.(1), the third block is
L(2) and so on

The following notation is used:

L(n) is the LBA written to the storage subsystem.

F(n) is the offset written to the storage subsystem at L(n).

N(n) is the number of blocks in the write operation that

caused the data to be written at L(n).
S(n) is the sequence code associated with the write opera-
tion that placed the data at L(n).

If all writes correctly place the data onto the storage sub-
system (that is there are no torn writes), then the following
rules are true:

Rule 0. IfS(n) is equal to S(n+1) then the data on these two

blocks were written to the storage by the same write

25

30

3 operation. L(n)+1 is expected to equal L(n+1) and
F(n)+1 to equal F(n+1) in this case.
Rule 1. If S(n+1)>S(n) then L.(n+1) must be first block of a
write operation and hence F(n+1) must be 0
0 Rule 2. If S(n+1)<S(n) then L(n) must be the last block of

a write operation, and hence F(n)+1 must equal N(n).

If the sequence numbers of two adjacent blocks are differ-
ent and rule 1 or 2 is not true, then an erroneous write is
detected and notified. For clarity if S(n+1) is not equal to S(n)
then an erroneous write will have occurred at L.(n) although in
reality it could be argued that it is halfway between nand n+1.

Consider an example. A five block write is performed
starting at [.(104). If the write is successful then the data
should look like:

45

50
L 102 103 104 105 106 107 108 109
F 12 1 2 3 4 7
N 10 10 H 5 H H 5 10
S 033 33 34 34 34 3 M 03B
55

The five block write is highlighted in bold and also under-
lined. If part of the write at [.(104) is torn, then not all of the
sectors involved in this second write are guaranteed to make
it to the storage subsystem. There are five possible cases:

Case 1. Some of the blocks at the start of the write are

missed (for example the blocks at 104 and 105 are
dropped

Case 2. Some of the blocks in the middle of the write are

missed (for example the block at 106 is dropped)

Case 3. Some of the blocks at the end of the write are

missed (for example the blocks at 107 and 108 are
dropped)

65

US 9,304,845 B2

9

Case 4. None of the blocks of the second write make it to
the storage subsystem (for example the blocks intended
for 104-108 are all dropped)

Case 5. All of the blocks of the second write make it to the
storage subsystem

In case (1) the data on the storage subsystem will look like:

L 102 103 104 105 106 107 108 109
F 0 1 2 3 2 3 4 7
N 10 10 10 10 5 5 5 10
s 33 33 33 33 34 34 34 33

A three block write is highlighted in bold and also under-
lined. An erroneous write is detected since rule 1 fails—S(n+
1)>S(n) and F(n+1) is not O when n=105. In other words
L(106) is not the first block in a write. This rule detects a tear
in the write at L.(105).

In the case (2) the data on the disk would look like:

L 102 103 104 105 106 107 108 109
F 0 1 0 1 4 3 4 7
N 10 10 5 5 10 5 5 10
s 33 33 34 34 33 34 34 33

The relevant blocks are highlighted in bold and also under-
lined. An erroneous write is detected since rule 2 fails—S(n+
1)<S(n) and F(n)+1 is not equal to N(n) when n=105. In other
words [(105) is not the last block in the write that started at
LBA n-F(n)=104. This rule detects a tear in the write at
L(105).

In the case (3) the data on the storage subsystem will look
like:

L 102 103 104 105 106 107 108 109
F 0 1 0 1 2 5 6 7
N 10 10 5 5 5 0 10 10
s 33 33 34 34 34 33 33 33

The relevant block write is highlighted in bold and also
underlined. Again an erroneous write is detected since rule 2
fails—S(n+1)<S(n) and F(n)+1 is not equal to N(n) when
n=106. This rule would detect a tear in the write at 1.(106).

In the case (4) the data on the storage subsystem will look
like:

L 102 103 104 105 106 107 108 109
F 0 1 2 3 4 5 6 7
N 10 10 10 10 10 10 10 10
S 33 33 33 33 33 33 33 33

It might be thought that this erroneous write could be
detected by the absence of any blocks with S(n)=34 being
present on the storage subsystem. This rule would detect a
tear in the write at [.(104). In fact, performing a write-read-
compare operation would detect any partial or complete tear
anywhere in the write. However if further writes are per-
formed that overlay [.(104) to LL(108), then it is no longer
possible to know if the write with S=34 was ever performed
on the storage subsystem. So the only way to detect a com-
pletely dropped write is to read the data back and check it for
the presence of the expected data before it gets overwritten. In
a sense though, a completely dropped write is not a true torn
write, as there is no mix of old and new data on the storage
subsystem.

15

20

25

30

35

40

N
v

65

10

In the case (5) all the correct data to the storage subsystem
has been written and the only reason it might be a torn write
is because the write did not complete properly. However there
is no ‘tear’ in the data on the storage subsystem, so there is
nothing to detect in terms of finding an erroneous write, and
hence there is no need of a rule to cover this situation.

The rules for detecting an erroneous write are therefore:

Rule 1. If S(n+1)>S(n) then a torn write is present if F(n+1)
isnot 0

Rule 2. If S(n+1)<S(n) then a torn write is present if F(n)+1
does not equal N(n).

There is a limitation in this approach. The sequence num-
ber in the data is a key element of the method to detect
erroneous write, as the error detection rules need to know the
order in which writes were written to the storage subsystem.
If'there is never more than one write in progress at a time, then
it is easy to insert a monotonically increasing sequence num-
ber in the data for each transfer. If more than one write
operation is being run in parallel, using multiple threads, then
this becomes more difficult. Consider the case where there are
two threads, A and B in an application and they are both about
to do a write operation. A is given the sequence code 100 and
then the A thread is suspended, and the B thread runs. The B
thread is given the next sequence code 101 and continues to
run for a little longer so it is able to issue its write request to
the host storage subsystem device driver. Then B is suspended
and A runs and issues its write with sequence code 100. So the
writes were not actually issued in the order corresponding to
the sequence numbers and this is likely to result in an apparent
torn write, if the data areas for the writes in A and B overlap.

The solution to this limitation is to use reservation mecha-
nism 206 for the logical blocks associated with an application
write. Note: this is nota SCSI type reservation but a purely an
internal mechanism in the embodiments. Small Computer
System Interface (SCSI) is a set of standards for physically
connecting and transferring data between computers and
peripheral devices.

Note; the scheme here will detect any tear in a write at any
block in the original write. Other rules for different storage
systems can be added.

For instance, a storage area network (SAN) volume con-
troller (SVC) would not guarantee avoiding erroneous writes
completely on cache enabled storage subsystem since they
are allowed on thirty two block boundaries relative to the
starting logical block. If the cache is in “fast write mode’ then
erroneous writes will also be allowed on sixty four block
boundaries relative to starting logical block. It is easy to add
further rules to check that these additional constraints are met
(or other constraint imposed by other types of disk storage
subsystem). The instance example further rules for an SVC
would be:

Rule 3—For the thirty two block boundary relative to the
start of the original write condition, if an erroneous write
occurs at L(n), then if F(n) modulus thirty two is zero
then it is known that the erroneous write is at a thirty two
block boundary relative to the start of the write, and in
the SVC case this would be an erroneous write that is
allowed to occur by the SVC specification.

Rule 4—For the sixty four block boundary relative to the
start of the original write condition, if an erroneous write
occurs at L(n), then the starting logical block for the
original write can be deduced to be L(n)-F(n). If L(n)-
F(n) modulus sixty four is zero then it is known that the
original write started on a sixty four block boundary
relative to the start of the original write condition, and in
the SVC case this would be an erroneous write that is
allowed to occur by the SVC specification.

US 9,304,845 B2

11

All of the above discussion relates to the detection of the
position (that the logical block address) of an erroneous write
in a test environment, where a write operation has failed (that
is has returned bad status) and it is wish to determine if the
boundaries between the old/new data on the disk subsystem
are consistent with the specification of the disk subsystem.

The same methodology could be used in a different sce-
nario, that of detecting the case where a write returns good
status and appears to work, but the storage subsystem has an
internal fault which caused it to drop some of the data. Unfor-
tunately, there has been a history of such faults in disk drive
technology and disk controller software over the years, so
such detection can be valuable, as it allows the host system to
determine that the data it has read back from the disk is
incorrect, even though it was told the write that placed the
data on the disk subsystem had worked correctly. To make this
work in a fixed block customer environment, the logical block
address, offset, number of blocks and sequence number must
still be stored on the disk, but the customer data will fully
occupy the normal data area on each block. Typically this
would be a five hundred and twelve byte block. It is therefore
necessary to increase the block size of the disk to make space
for these extra fields, and if eights bytes are allowed for the
logical block address and sequence number and if 4 bytes are
allowed for the offset and number of blocks, then each sector
on the disk must contain 536 bytes of data. It might be nec-
essary to make the sequence number 16 bytes to be certain to
avoid any wrapping issues each time it is incremented.

With these extra four fields in place, the host system can
apply rule 1 and rule 2 above, after each read operation and
determine if there is an error in the data—if so, that indicates
that a previous write has ‘dropped’ part of the data. Of course,
if a write operation has failed in the past, then there could be
a legitimate tear in the data—however it is easy for the host to
keep track of these areas on the disk or repeat the write until
itis successful. So this method can also be used to identify the
loss of data due to a silently dropped write.

Further embodiments of the invention are now described. It
will be clear to one of ordinary skill in the art that all or part
of the logical process steps of an embodiment may be alter-
natively embodied in a logic apparatus, or a plurality of logic
apparatus, comprising logic elements arranged to perform the
logical process steps of the method and that such logic ele-
ments may comprise hardware components, firmware com-
ponents or a combination thereof.

Itwill be equally clearto one of skill in the art that all or part
of the logic components of an embodiment may be alterna-
tively embodied in logic apparatus comprising logic elements
to perform the steps of the method, and that such logic ele-
ments may comprise components such as logic gates in, for
example a programmable logic array or application-specific
integrated circuit. Such a logic arrangement may further be
embodied in enabling elements for temporarily or perma-
nently establishing logic structures in such an array or circuit
using, for example, a virtual hardware descriptor language,
which may be stored and transmitted using fixed or transmit-
table carrier media.

In a further alternative embodiment, the present invention
may be realized in the form of a computer implemented
method of deploying a service comprising steps of deploying
computer program code operable to, when deployed into a
computer infrastructure and executed thereon, cause the com-
puter system to perform all the steps of the method.

It will be appreciated that the method and components of an
embodiment may alternatively be embodied fully or partially
in a parallel computing system comprising two or more pro-
cessors for executing parallel software.

10

15

20

25

30

35

40

45

55

60

65

12

It will be clear to one skilled in the art that many improve-
ments and modifications can be made to the foregoing exem-
plary embodiment without departing from the scope of the
present invention.

The descriptions of the various embodiments ofthe present
disclosure have been presented for purposes of illustration,
but are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to explain the principles
of the embodiments, the practical application or technical
improvement over technologies found in the marketplace, or
to enable others of ordinary skill in the art to understand the
embodiments disclosed herein.

What is claimed is:

1. A verification system for validating data written to logi-
cal blocks on a storage subsystem, said storage subsystem
being adapted so that during write operations of data to the
logical blocks, an additional sequence code is written to each
logical block whereby said sequence code remains constant
for each write operation batch and whereby said sequence
code is incremented for each new write operation batch, said
verification system comprising:

a data reader for reading respective first and second
sequence codes (S(n) and S(n+1)) from consecutive first
and second logical blocks (I.(n) and L(n+1));

a validity engine for checking validity by applying the
following operations: invalidating a corresponding write
operation batch if a first sequence code (S(n)) is less than
the second sequence code (S(n+1)) and a block offset
(F(n+1)) of the second logical block (L(n+1)) is not
equal to zero; and invalidating the corresponding write
operation batch if the first sequence code S(n) is more
than the second sequence code S(n+1) and a block offset
(F(n)) of a first logical block (I(n)) does not correspond
to a number of logical blocks in a corresponding batch
write operation for the first logical block (L(n)); and

an error notifier for notifying an error for each invalidated
write operation batch.

2. A verification system according to claim 1 further com-
prising ensuring that a first thread (A) places a reservation in
the storage subsystem for those logical blocks that it is going
to write to, before it obtains a sequence number it will use in
the write.

3. A verification system according to claim 1 wherein a
sequence code is an eight byte value.

4. A verification system according to claim 1 wherein
checking validity by applying a further test of validating the
first and second logical blocks (L(n) and L(n+1)) if a torn
write occurs at logical block L(n) where the block offset F(n)
modulus of a predetermined verification system block offset
is zero.

5. A verification system according to claim 1 wherein a
block offset (F(n)) of the first logical block (L(n)) equals the
number of logical blocks in the batch write operation minus
one.

6. A verification system according to claim 1 wherein
sequence codes are written to that part of the logical block that
is reserved for application data.

7. A verification system according to claim 1 wherein
sequence codes are written to that part of the logical block that
is reserved for metadata.

8. A method for validating data written to logical blocks on
a storage subsystem, said storage subsystem being adapted so
that during write operations of data to logical blocks, an
additional sequence code is written to each logical block

US 9,304,845 B2

13

whereby said sequence code remains constant for each write
operation batch and whereby said sequence code is incre-
mented for each new write operation batch, said method
comprising:

(A) reading respective first and second sequence codes
(S(n) and S(n+1)) from consecutive first and second
logical blocks (L(n) and L(n+1));

(B) checking validity by applying the following opera-
tions:

(1) invalidating a corresponding write operation batch if a
first sequence code (S(n)) is less than the second
sequence code (S(n+1)) and a block offset (F(n+1)) of
the second logical block (L(n+1)) is not equal to zero;

(2) invalidating the corresponding write operation batch if
the first sequence number (S(n)) is more than the second
sequence number (S(n+1)) and a block offset F(n) of a
first block (L(n)) does not correspond to the number of
logical blocks in a corresponding batch write operation
for a first logical block (L(n));

(C) notifying an error for each invalidated write operation
batch; and

performing steps (A), (B) and (C) for each logical block (n)
from a plurality of logical blocks (zero to N).

9. A method according to claim 8 further comprising ensur-
ing that a first thread (A) places a reservation in the storage
subsystem for those logical blocks that it is going to write to,
before it obtains the sequence number it will use in the write.

10. A method according to claim 8 wherein the sequence
code is an eight byte value.

11. A method according to claim 8 wherein checking valid-
ity by applying a further test of validating the logical block
pair (n and n+1) if a torn write occurs at logical block L(n)
where block offset F(n) modulus of a predetermined verifi-
cation system block offset is zero.

12. A method according to claim 8 wherein the block offset
F(n) of the first logical block (L(n)) equals the number of
logical blocks in the batch write operation minus one.

13. A method according to claim 8 wherein sequence codes
are written to that part of the logical block that is reserved for
application data.

14. A method according to claim 8 wherein sequence codes
are written to that part of the logical block that is reserved for
metadata.

15. A computer program product for validating data written
to logical blocks on a storage subsystem, said storage sub-
system being adapted so that during write operations of data
to logical blocks, an additional sequence code is written to
each logical block whereby said sequence code remains con-
stant for each write operation batch and whereby said

25

30

35

40

45

14

sequence code is incremented for each new write operation
batch, the computer program product comprising:

a computer readable storage medium having stored

thereon:

program instructions executable by a device [e.g., com-

puter, processor, processing circuit, etc.] to cause the

device to:

(A) reading respective first and second sequence codes
(S(n) and S(n+1)) from consecutive first and second
logical blocks (L(n) and L(n+1));

(B) checking validity by applying the following opera-
tions:

(1) invalidating a corresponding write operation batch if
a first sequence code (S(n)) is less than the second
sequence code (S(n+1)) and a block offset (F(n+1)) of
the second logical block (L(n+1)) is not equal to zero;

(2) invalidating the corresponding write operation batch
if the first sequence number (S(n)) is more than the
second sequence number (S(n+1)) and a block offset
F(n) of a first block (L(n)) does not correspond to the
number of logical blocks in a corresponding batch
write operation for a first logical block (L(n));

(C) notifying an error for each invalidated write opera-
tion batch; and

performing steps (A), (B) and (C) for each logical block (n)

from a plurality of logical blocks (zero to N).

16. The computer program product of claim 15 wherein the
program instructions further cause the device to ensure that a
first thread (A) places a reservation in the storage subsystem
for those logical blocks that it is going to write to, before it
obtains the sequence number it will use in the write.

17. The computer program product of claim 15 wherein the
program instructions further cause the sequence code to be an
eight byte value.

18. The computer program product of claim 15 wherein the
program instructions further cause the device to check valid-
ity by applying a further test of validating the logical block
pair (n and n+1) if a torn write occurs at logical block L(n)
where block offset F(n) modulus of a predetermined verifi-
cation system block offset is zero.

19. The computer program product of claim 15 wherein the
program instructions further cause the block offset F(n) of the
firstlogical block (I.(n)) to equal the number of logical blocks
in the batch write operation minus one.

20. The computer program product of claim 15 wherein the
program instructions further cause sequence codes to be writ-
tento a part of the logical block that is reserved for application
data.

